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Abstract

In this paper we study the formation of wages in a frictional search market where firms

can choose either to bargain with workers or post non-negotiable wage offers. Workers can

secure wage increases for themselves by engaging in on-the-job search and either moving to

firms that offer higher wages or, when possible, leveraging an outside offer into a higher wage

at the current firm. We characterize the optimal wage posting strategy of non-negotiating

firms and how this decision interacts with the presence of renegotiating firms. The model has

important implications for worker wage dispersion, efficiency of worker mobility decisions,

and welfare. We quantitatively examine these implications by estimating the model, using

data on the wages and employment spells of low-skill workers in the United States. Finally,

as a policy application of the study, we assess the impact of binding minimum wages on firm

bargaining strategies and worker welfare in a general equilibrium setting.

1 Introduction

Using data collected from a sample of recent hires, Hall and Krueger (2012) show that in setting

initial compensation some firms specify a fixed, non-negotiable wage or salary, while other firms

negotiate with the new employee over compensation levels. Approximately one-third of sample

members report having bargained with their employers at the time of their initial hiring, with

bargaining more likely to have occurred for more highly educated workers. In these cases, they

found that their current employers had learned their compensation in earlier jobs before making

the (accepted) compensation offer in the current job.

These findings suggest that employers may employ different strategies when hiring workers,

with some essentially following a wage-posting paradigm, while others actively engage in bargain-
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ing. Although Hall and Krueger find evidence that there is a systematic relationship between the

characteristics of the worker and the market in which they are searching on the likelihood that

compensation was set through bargaining, within any class of workers or market there are cases in

which wages were bargained over and others in which they were not. This heterogeneity in wage

determination methods is not examined within the vast majority of partial and general equilib-

rium models of labor market search. In models of wage posting, employers make take-it-or-leave-it

offers to applicants, which the applicant either accepts or rejects. Perhaps the most well-known

models of wage posting are Albrecht and Axell (1984) and Burdett and Mortensen (1998). In

these models, firms offer fixed wages to all applicants they encounter, and it is often assumed that

all applicants are equally productive. In the Burdett and Mortensen model, workers of homoge-

neous productivity are offered different wages by ex ante identical firms. Their model produces

an equilibrium wage offer distribution and steady state wage distribution that are nondegenerate,

even though all workers and firms are ex ante identical.1

Most wage bargaining models estimated using individual-level data are based an assumption of

ex ante heterogeneity in worker and/or firm productivities. Most typically, some sort of cooperative

bargaining protocol is assumed, such as Nash bargaining or simply surplus division. In the cases

in which on-the-job (OTJ) search is introduced, assumptions are made regarding the amount of

information available to the worker and firm during the bargaining process. In one extreme case,

firms are assumed to know not only the worker’s current (or potential) productivity at their firm,

but also the value of the worker’s best alternative productivity match (e.g., Postel-Vinay and

Robin (2002), Dey and Flinn (2005), Cahuc et al. (2006)). An alternative assumption is that

employers either do not know the employee’s outside option or that they simply don’t respond to

such information when making an offer.

In an early version of this paper, we showed that estimating a model of on-the-job search with

surplus division and binding minimum wages yielded very different model estimates and policy

implications depending on whether one assumed renegotiation or not.2 Within their setting, which

was more restrictive than the one considered here, in the no renegotiation case firms simply split

the surplus with workers using the value of unemployed search as an outside option.3 It is worth

noting that both specifications of the bargaining process imply efficient mobility decisions, that is,

a worker always left their current employer when she encountered a firm at which her productivity

was greater. Facing the same primitive parameters characterizing the search environment, firms

1These assumptions are relaxed when taking the model to data, as is they imply a monotone increasing density

function on the support of the wage distribution. For the estimation of such a model, see Bontemps et al. (2000))
2In these two cases, the primitive parameters characterizing the models are identical.
3Whlle this is clearly restrictive, the value of unemployed search is defensible as an outside option in the case

that firms cannot commit honoring previous wage commitments after an applicant’s or worker’s competing wage

offer has been withdrawn.
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prefer a world in which there is no renegotiation, while individuals capture more of the surplus

under renegotiation of contracts.

In this paper we consider a world in which there exists a positive measure of firms who rene-

gotiate and a positive measure of firms that do not, with the proportion of firms of both types

determined within an equilibrium model of vacancy posting. Firms that renegotiate have infor-

mational advantages with respect to those that don’t, but also agree to a surplus division policy

that commits them to increasing wages to workers even when the potential new job has lower pro-

ductivity than the current one, but is greater than the employee’s previous outside option under

which the existing wage was set. Wage-posting firms issue wage contracts that are functions of the

employee’s productivity at the firm, and are fixed over time. Wage-posting firms are cognitive of

the existence of renegotiating firms, and make conditional (on productivity) strategic wage offers

that are functions of the measure of renegotiating firms in the labor market. In this environment,

an employee of a non-renegotiating (n) firm who encounters a renegotiating (r) firm may leave the

current employer even though their productivity is lower at the type r firm. In this world, there

exists inefficient mobility, a phenomenon that does not exist if all firms are type n or if all firms

are type r.

We assume that the vacancy posting costs are different for jobs at r or n type firms. One

rationale for this assumption is that r type firms must invest in verifying an applicant’s current

outside option, including what their productivity level is if they are currently employed by another

firm and what type of firm their current employer is (i.e., r or n). Since we assume that all firms

are identical ex ante, we characterize the unique equilibrium in which firms are indifferent between

posting an r or an n type vacancy, and the expected value of a vacancy of either type is 0. Denote

the equilibrium proportion of type r firms by p(Ω), where Ω is the set of primitive parameters

characterizing the model. One of our goals is to determine how the mixture of firm types is affected

by changes in the environment. Our policy application will be to the impact of minimum wages

on labor market outcomes. In this case, the economic environment is described by Ω and m, the

minimum wage. The proportion of firms of type r under the minimum wage is given by p(Ω,m),

and our interest is in determining the equilibrium effects of a minimum wage change through this

channel. As noted above, workers’ surplus is generally maximized when all firms are type r. While

a minimum wage increase will typically reduce wage posting, thereby attenuating or reversing

gains to workers in partial equilibrium, in this case the impact will further depend on how the

minimum wage affects the proportion of type r firms in the economy.

The most similar paper to the current one is Postel-Vinay and Robin (2004). In that paper,

the authors utilize a matching technology with workers of heterogeneous abilities, a, and firms of

heterogeneous productivities, z, coming together through random search, with the productivity of

the match given by az. They attempt to find a separating equilibrium, in which firms with produc-
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tivities in the set R agree to negotiation while those with z /∈ R refuse. Under certain restrictions,

they are able to prove existence of an equilibrium and perform some numerical experiments. Un-

like their paper, ours assumes ex ante homogeneity of firms, which is partially dictated by the

sources of data at our disposal. In our case, we assume that the productivity of an individual

of type a is given by aθ, where θ is an i.i.d. match draw representing the worker’s idiosyncratic

productivity associated with working at a given firm. Our model also features the endogenous

determination of vacancy creation. One of the main focuses of our paper has how changes in the

economic environment (e.g., a minimum wage) affects the mix of the two types of firms in the

economy.

In Section 2 we describe the model and present some results. Section 3 introduces a minimum

wage into the model. In Section 4 we discuss our choice of data that will inform an empirically

plausible parameterization of the model, which we arrive at through an indirect inference proce-

dure. Section 5 describes and presents the results of this procedure. The resulting estimates allow

us to quantitatively explore some implications of the model in partial equilibrium. In Section 6

we extend the model to include the endogenous determination of contact rates, and we perform

policy experiments in which the minimum wage is varied. Section 7 concludes.

2 Model

2.1 Setup and Preliminaries

The model is set in continuous time, with all agents on the supply side of the market distinguished

by their ability, a. Upon meeting any firm in the market, individuals draw a productivity real-

ization θ. a and θ are distributed on a subset of the positive real line with c.d.f. Fa and Fθ,

respectively. It is necessary for us to assume that Fθ is continuous on it’s domain, while we do

not, in principal require any such restrction on Fa. The value θ, as well as ability a, are perfectly

observed by both (potential) employees and firms, and productivity realizations are independently

distributed across employee-employer pairs. An employee with ability a at a firm with match θ

produces a flow output aθ, while an unemployed worker enjoys flow utility ab.

Firms in the market are ex ante homogeneous except for the manner in which they interact

with potential or current employees in setting wages, the only utility-yielding characteristic of the

employment contract to the worker. The firm’s bargaining type is indicated by j, with j ∈ {r, n}.

A type r firm is a “(re-)negotiator,” and this type of employer bargains over wage contracts with

employees at the beginning and over the course of their tenure at the firm. A type n firm is a

“nonrenegotiator,” that makes a one-time take-it-or-leave-it wage offer to a potential employee

based upon the individual’s ability, a, and potential productivity at the firm, θ. In the remainder
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of this paper, we adopt the semantic convention of referring to a single firm as an “r-firm” or an

“n-firm”. The value to workers of being at either type of firm is summarized by the value function

Vj , j ∈ {r, n}.

In the steady state, unemployed workers meet firms at rate λu, while workers encounter al-

ternative employers at a rate λe. Matches are exogenously destroyed at a constant rate δ. When

meeting a potential employer, the probability is p that it is of type j = r. In section 6 we show

how the contact rates λu and λe, as well as the proportion, p, of r-type firms are determined in

general equilibrium. A critical assumption that our solution requires is the free entry condition:

the expected return to market entry (achieved by purchasing and posting a vacancy) for either

type of firm is equal to zero.

In the remainder of this section we focus our attention on how to solve for several important

endogenous objects in equilibrium. We proceed by:

1. Introducing the wage-bargaining framework for r-firms (Section 2.2).

2. Solving for the worker’s value functions, Vn and Vr, and mobility decisions, holding fixed the

wage-offer strategies of n-firms (Section 2.3).

3. Under the given rules for worker mobility, solving for the distribution of workers in steady

state across employment states (Section 2.4).

4. Fixing the above endogenous objects, we solve the wage-offer problem faced by an n-firm.

To close the model, n-firms’ optimal wage offer strategies must be in concordance with those

we fixed in step (2). We show how to solve the model under this equilibrium restriction

(Section 2.5).

5. Finally, we consider the implications of adding a binding minimum wage to the model (Sec-

tion 3).

A note on heterogeneity in the model To simplify exposition, we suppress dependence

of the model’s value functions and wages on ability, a. Since wages at both firm types can be

conditioned on ability, the reader can think of the following model solution as applying for fixed

a.

2.2 Wage-Setting At R-Firms

While n-type firms make non-negotiable and permanent offers, we must describe in more detail

the set of assumptions that define wage determination for renegotiating firms in equilibrium.

Importantly, wages are set such that the value afforded to workers is equal to their private outside

option plus a share, α, of the joint surplus generated by the match. Let S(θ) denote the joint
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surplus available from a match θ, so that for example, when hiring a worker from an n-type firm,

with a wage w, a wage is bargained that results in a continuation value to the worker of:

(1− α)Vn(w) + αS(θ)

Similarly, when hiring the worker out of unemployment, the continuation value achieved is:

(1− α)Vu + αS(θ)

When, during the bargaining process, the worker currently has a job at an r-type firm, we assume

that both firms are drawn into Bertrand competition. In this setting, the outcome is identical to

that in Cahuc et al. (2006) and Dey and Flinn (2005): the losing firm is willing to pay a wage up

to, but not exceeding the value of the match, θ′. Thus, the worker’s outside option in this case is

the full surplus of the match S(θ′) and hence she receives the continuation value:

(1− α)S(θ′) + αS(θ).

2.3 Values and Match Surplus Equations

Before describing the full set of mobility patterns that can occur in equilibrium, it will be useful

to write down and investigate the properties of the surplus function, S, and the worker’s value

function, Vn, at non-negotiating firms. To do this, let Φ be the endogenous distribution of offers

received from non-negotiating firms (we will later turn our attention to solving for this object in

equilibrium). Under this assumption,the value to a worker at an n-firm can be written as follows:

(r + δ)Vn(w) = w + λep

∫
α[S(x)− Vn(w)]+dFθ(x)︸ ︷︷ ︸

(1)

+ λe(1− p)
∫

[Vn(x)− Vn(w)]+dΦ(x)︸ ︷︷ ︸
(2)

+δVu. (1)

Here, term (1) is the expected continuation value derived when the worker meets an r-firm, which

occurs at a rate λep. If the surplus attainable at this firm exceeds the value of remaining, a

fraction α of the difference is obtained through the Nash-bargaining process. Term (2) is the

expected continuation value derived when meeting another n-firm, which is seized upon only if

the value from the offered wage exceeds the value of remaining.

The total surplus function, S, can be similarly written below. This object, which is the total

value to both the worker and the firm from the match, is useful because in our framework we have

assumed directly transferable utility. However, it may help the reader to imagine that S(θ) is the

value to the worker when their wage is equal to total match output (and hence they have captured
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the full surplus from the match):

(ρ+ δ)S(θ) = θ + λep

∫
α[S(x)− S(θ)]+dFθ(x)︸ ︷︷ ︸

(1)

+ λe(1− p)
∫

[Vn(x)− S(θ)]+dΦ(x)︸ ︷︷ ︸
(2)

+δVu (2)

Once again, term (1) shows what happens when the worker meets another r-firm: Bertrand

competition bids up the worker’s outside option to S(θ) and an additional fraction α of the

difference is obtained through bargaining. The firm receives a value of 0, by virtue of the free

entry condition. In term (2), the worker meets an n-firm and additional surplus is only generated

if the value from the wage offer exceeds S(θ). In this case, the firm once again receives 0.

An immediate observation is that setting Vn = S allows both recursive equations to hold (in

fact they become identical), and hence we conclude that S(x) = Vn(x). This allows us to write a

dynamic program solely in terms of S:

(ρ+ δ)S(θ) = θ + λep

∫
α[S(x)− S(θ)]+dFθ(x) + λe(1− p)

∫
[S(x)− S(θ)]+dΦ(x) + δVu. (3)

The substance of this useful result is that earning a wage w at an n-firm is, from the worker’s

perspective, equivalent to being at an r-firm with match productivity w, having claimed the

full surplus from this match. It is elementary to now show that this surplus function is strictly

increasing in its sole argument. This permits us to define the reservation match value, θ∗, according

to:

Vu = S(θ∗) (4)

This concept defines which matches (and wage offers from n-firms) are acceptable to workers when

being hired out of unemployment.

Additionally, this observation proposes a useful state definition for workers at both type of

firms: the maximum attainable wage, x. At r-firms, the maximum attainable wage is equal to the

match productivity, θ, while at n-firms, it is equal to w (since the firm is unwilling to renegotiate

w). This state, x, is particularly useful for parsimoniously writing the worker’s value function when

employed at an r-firm, and for describing mobility patterns and renegotiation in equilibrium.

To verify the second point, note that since S is a monotonic function and equal to Vn, the

worker will move to the firm at which the maximum attainable wage is highest, since this criterion

identifies the firm that is able to offer the highest value to the worker after the option to renegotiate

is exercised.

To address the first point, notice that we can now write the value to a worker at an r firm as:

Vr(θ, q) = (1− α)S(q) + αS(θ). (5)
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Here, q is defined as the maximum attainable wage at the outside option used when the current

wage was bargained. According to our assumptions, this is equal either to the wage offer at n-

firms or the match productivity at r-firms. The state variable q also parsimoniously defines when

a wage must be renegotiated: when the negotiated wage, using this outside option, achieves a

value greater than the one currently bargained. Inspection of (5) reveals that this can only occur

when a maximum attainable wage, x, is drawn such that x ≥ q. With this observation in hand,

we can now write the recursive definition of this value function:

(ρ+ δ + λepF θ(q) + λe(1− p)Φ(q))Vr(θ, q) = φ(θ, q)

+ λep


∫ θ

q

[(1− α)S(x) + αS(θ)]dFθ(x)︸ ︷︷ ︸
(1)

+

∫
θ

[αS(x) + (1− α)S(θ)]dFθ(x)︸ ︷︷ ︸
(2)



+ λe(1− p)


∫ θ

q

[(1− α)S(x) + αS(θ)]dΦ(x)︸ ︷︷ ︸
(3)

+

∫
θ

S(x)dΦ(x)︸ ︷︷ ︸
(4)

+ δVu (6)

Here the wage φ(θ, q) is set such that the surplus split defined in (5) is achieved. The gains in

dynamic value arise from four different outcomes, described as follows: (1) The worker meets an

r-firm and a match x is drawn that beats the previous outside option, q, and hence the wage at

the incumbent firm is renegotiated after Bertrand competition; (2) The worker meets an r-firm

and a match x is drawn that beats the current match θ. The incumbent firm competes for the

worker, but is unwilling to bid a wage above θ, and hence the surplus S(θ) is used as an outside

option when bargaining with the new firm; (3) The worker meets an n-firm and draws a non-

negotiable wage offer x that beats the previous outside option, q, and the wage is renegotiated at

the incumbent firm; and (4) The worker meets an n-firm and draws a non-negotiable wage offer x

that beats the best available offer from the incumbent firm, θ. The wage function φ(θ, q) can be

derived by combining (6) with (5). We relegate its formal expression to the appendix.

To close this section we show how the value to workers from being unemployed, Vu, can be

written. First, note that when hiring a worker out of unemployment, this is equivalent to hiring

a worker from a firm with match productivity θ∗, and hence the worker’s value can be written as

Vr(θ, θ
∗) in this case. We get:

ρVu = b+ λupα

∫
θ∗

(S(x)− Vu)dFθ(x) + λu(1− p)
∫
θ∗

(S(x)− Vu)dΦ(x). (7)

Using (4) with the above we can define the reservation match quality θ∗ by the relation:

θ∗ = b+ (λu − λe)
[
pα

∫
θ∗

(S(x)− S(θ?))dF (x) + (1− p)
∫
θ∗

(S(x)− S(θ?))dΦ(x)

]
(8)
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With the definition of θ∗ now in hand, the following lemma will prove useful in the next section,

so we introduce it here.

Lemma 1. Define w = inf{x : Φ(x) > 0}. Then w = θ∗.

Proof. See appendix.

This result follows immediately by noting that all matches θ > θ∗ are profitable for n-firms,

while wage offers above the match value are not profitable.

2.4 Steady State

In the previous section, we derived a characterization of the conditions under and the rate at

which workers move between employment states. In this section, we use those rules to derive the

steady state distribution of workers across states.

First, normalizing the mass of workers in the economy to 1, we let Me and Mu indicate the

steady state mass of workers in employment and unemployment, respectively. From the previous

section, we conclude that the flow rate out of unemployment is λuF θ(θ
∗), with F θ = 1 − Fθ (we

adopt this notational convention, · for all distributions). The flow rate into unemployment is

simply δ. Thus, we can write:

Me =
λuF θ(θ

∗)

δ + λuF θ(θ∗)
, Mu =

δ

δ + λuF θ(θ∗)
.

We established in the last section that worker mobility is defined by a sufficient statistic: the

maximum attainable wage. Let G be the distribution of workers across this state. G represents the

distribution of best available offers, conditional on being employed. We can see how this object

is required knowledge when an n-firm makes its wage offer, since it must factor the probability

that a given wage is acceptable to the prospective employee. For a randomly sampled employed

worker, the probability that a wage, w, is acceptable is given by G(w).

Let Gr(x) and Gn(x) be the measure of workers at n and r firms with best attainable wage

less than or equal to x. We know that:

Gr(x) +Gn(x) = G(x)

Finally, let H(· | x) be the conditional distribution of “most recent competing offers” for workers

at r firms with match x. For example, H(q | x) is the probability that a worker at a firm with

match x used an outside offer less than or equal to q for their most recent wage-bargain.

Balancing flow equations in Appendix D.1 gives the following closed-form expressions for each
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distribution object:

G(x) =
p(Fθ(x)− Fθ(θ∗)) + (1− p)(Φ(x)− Φ(θ?))

δ + λepF θ(x) + λe(1− p)Φ(x)

Mu

Me
(9)

gr(x) =
λupfθ(x)(δ + λeF θ(θ

∗)

Ψ(x)2

Mu

Me
(10)

gn(x) =
λu(1− p)φ(x)(δ + λeF θ(θ

∗)

Ψ(x)2

Mu

Me
(11)

H(q|x) =

(
Ψ(x)

Ψ(q)

)2

(12)

where

Ψ(x) = δ + λepF (x) + λe(1− p)Φ(x)

This final term, Ψ(x), defines the flow rate of exit of a worker from a firm whose highest possible

wage offer is x.

With these expressions we have fully characterized, given the endogenous wage offer distribu-

tion Φ, how workers are distributed across firms and wages in steady state. We can finish presenting

the model solution then by showing how the distribution Φ can be derived, and imposing that it

is consistent with the equilibrium conditions presented thus far.

2.5 The Firm’s Problem

So far we have established, given our bargaining and renegotiation assumptions, how the value

functions for workers and for r-firms can be determined, fixing the distribution Φ of wage offers

from n-firms. To round out the model, we introduce the wage-setting problem of n-firms and

show how it can be solved. We assume that, upon meeting a worker, a match quality θ is drawn.

Next, the n-firm makes a non-negotiable wage offer, w, that the worker can accept or reject. If

the wage is rejected, the match is dissolved instantly. The worker takes her outside option in this

case, while the firm receives zero payoff, by virtue of the free entry condition. We assume that the

firm must make its offer with no information about the worker’s current employment state. This

assumption may seem stark, since one could imagine that a firm can acquire such information

with ease. However, we view pursuit of this strategy as being tantamount to the firm “coming to

the table” in the parlance of bargaining, and hence the “take-it-or-leave-it” nature of the offer no

longer becomes credible.

Thus, firms’ expected discounted profit can be written as:

J(θ, w) = HireProb(w)︸ ︷︷ ︸
(1)

× θ − w
ρ+ δ + λ1pF θ(w) + λ1(1− p)Φ(w)︸ ︷︷ ︸

(2)

.

Term (1) is simply the probability that the wage offer w is accepted by the worker, while term

(2) is the discounted value of profits. The numerator of this term is the firm’s flow profit, while
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the denominator reflects the effective discount rate, which incorporates the hazard rate at which

the firm loses the worker. This occurs whenever the worker meets an r-firm and a match is drawn

that beats w, or whenever the worker meets an n-firm and a wage is drawn that beats w.

Restricting our attention to wage offers that satisfy w ≥ θ∗ (since wage offers less than θ∗ are

trivially suboptimal), the hiring probability can be written as:

HireProb(w) =
λuMu

λuMu + λeMe︸ ︷︷ ︸
(1)

+
λeMe

λuMu + λeMe︸ ︷︷ ︸
(2)

G(w).

With probability given by term (1), the worker is unemployed, and the match is accepted. With

probability given by term (2), the worker is employed. In this case, the offer is only accepted if the

worker’s current maximum attainable wage is less than w. This happens with probability given

by G(w).

Using our derivation of G from the previous section, we can write the firm’s expected profit

finally as

J(θ, w) =
λuMuλeF θ(θ

∗)

λuMu + λeMe

θ − w
Ψ(w)(ρ+ Ψ(w))

= Γ(w)(θ − w) (13)

Subject to a match draw θ, the firm solves the problem

max
w

J(θ, w). (14)

Notice that if this problem identifies a unique wage, w, for each match level θ, then this defines

a function ϕ : R+ 7→ R+. If this function, ϕ, is strictly increasing, then we can write:

Φ(w) = Fθ(ϕ
−1(w)).

To clarify the role played by Φ as a functional parameter of the maximization problem, let us

re-write (14) as:

max
w
{Γ(Φ(w), Fθ(w))(θ − w)} (15)

Given a monotonically increasing offer function, ϕ, this defines an operator:

[T ϕ](θ) = arg max
w

{
Γ(Fθ(ϕ

−1(w)), Fθ(w))(θ − w)
}
.

In equilibrium, it must be that the wage offer function ϕ is a fixed point of this operator T , i.e.

T ϕ = ϕ. Before we show how such a fixed point can be found, the following result guarantees

that searching for such a deterministic, monotonic function is appropriate in this setting.

Proposition 1. Firms’ optimal wage offer strategies are given by a deterministic function ϕ that

is (1) monotonically increasing; (2) lower semi-continuous; (3) almost everywhere differentiable;

and (4) satisfies ϕ(θ∗) = θ∗.

Proof. The proof is given as a combination of Lemmas 1-7 in the Appendix.
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We finish this section by proposing a parsimonious computational strategy for finding the fixed

point, ϕ. Notice that, if such a solution is found, the model in partial equilibrium (i.e. with fixed

values of p, λu, and λe) is solved. Inspecting equation (13) reveals the trade-off that firms face:

both hiring and worker retention probabilities are increasing in w, while flow profits are decreasing

in w. These are, as usual, balanced by the first-order condition:

d

dw
Γ
(
Fθ(ϕ

−1(w)), Fθ(w)
)
(θ − w)− Γ(Fθ(ϕ

−1(w), Fθ(w)) = 0

Using Γ1, Γ2, to denote the derivative of Γ in its first and second arguments, we get:

[
Γ1

(
Fθ(ϕ

−1(w)), Fθ(w)
)
fθ(ϕ

−1(w))/ϕ′(ϕ−1(w))

+ Γ2

(
Fθ(ϕ

−1(w)), Fθ(w)
)
fθ(w)

]
(θ − w)− Γ

(
Fθ(ϕ

−1(w)), Fθ(w)
)

= 0 (16)

Finally, by imposing that in equilibrium we must have ϕ(θ) = w, this condition becomes[
Γ1

(
Fθ(θ), F (w)

)
fθ(θ)/ϕ

′(θ) + Γ2

(
Fθ(θ), F (w)

)
f(w)

]
(θ − w)− Γ

(
Fθ(θ), Fθ(w)

)
= 0 (17)

This can be rearranged into a first order differential equation which, when combined with the

boundary condition ϕ(θ∗) = θ∗, is readily solved numerically. Notice that Proposition 1 does not

guarantee that the first order condition uniquely identifies the optimal wage offer, and in fact there

may be discontinuities in ϕ. In Appendix D.2 we show how to leverage the properties of the wage

solution into a robust numerical algorithm.

2.6 Introducing Heterogeneous Ability

In delivering the above model solution, we asked the reader to relax dependance of the model’s

endogenous objects on a. Before we move to the next section, we note that this dependance

can be re-introduced by verifying that the endogneous system of objects: S, Vn, φ, ϕ, Vu are all

multiplicative in a. Thus, we can write:

S(a, θ) = aS(θ)

Vr(a, θ, q) = aVr(θ, q)

φ(a, θ, q) = aφ(θ, q)

ϕ(a, θ) = aϕ(θ)

Vu(a) = aVu

The above properties also imply that the reservation match value θ∗ is invariant in a. This

simplification is guaranteed by the fact that (1) the flow value of unemployment (ab) and output

(aθ) are multiplicative in a; and (2) firms can condition their wage offers on a. We can, therefore,

think of φ(θ, q) and ϕ(θ) as efficiency wages, a fact we exploit in estimating this version of the
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model. In the next section we will see that this convenient property is lost once the possibility of

a binding minimum wage is introduced.

3 Introducing a Minimum Wage

In this section we extend the model to allow for a binding minimum wage, m. There are two

consequences of the minimum wage for wage-setting in this model. First, supposing that aθ∗ < m,

the minimum wage renders matches in the range [θ∗,m/a] unacceptable. Second, even if the

reservation match value θ∗ satisfies aθ∗ > m, the minimum wage may still bind. This will occur

at firms where the continuation value is large enough such that a worker is willing to accept a

wage less than the legal minimum: aφ(x, y) < m. In order to think about the problem for a

worker of ability level a, we recast the problem in terms of efficiency wages (as we did in the

last section). Accordingly, we define the efficiency minimum wage m̃ = m/a, which tells us the

minimum allowable efficiency wage paid to worker a. In what follows, we fix this ability level, a,

and for notational simplicity suppress dependence of functions on this parameter. Additionally,

note that there will be ability levels sufficiently high such that the minimum wage does not bind

in any case and is therefore irrelevant to the model.

Now the model can once again be thought of as multiplicatively homogenous in a. Let M(θ)

be the value to a worker of earning the minimum wage, m̃, at a firm with match θ. Noting that

values are monotonically increasing in the wage earned, we note that the minimum wage will be

paid whenever φ(θ, y) < m̃, which occurs whenever

αV (θ) + (1− α)V (y) < M(θ),

Thus, the value function M can be written recursively as:

(ρ+ δ)M(θ) = m̃+ λep

∫ θ

m̃

max{(1− α)S(x) + αS(θ)−M(θ), 0}dFθ

+ λep

∫
θ

max{M(x)−M(θ), αS(x) + (1− α)S(θ)−M(θ)}dFθ

+ λe(1− p)
∫

max{(1− α)S(x) + αS(θ)−M(θ), S(x)−M(θ), 0}dΦ + δVu (18)

When a worker, earning minimum wage at a firm with match θ, meets another firm with best

available wage x, the outcomes can be described as follows:

1. With probability p, the firm is willing to negotiate, and if m̃ < x < θ, our usual bargaining

assumptions apply, with the worker negotiating a new wage offer φ(θ, x). However, it may

be that the negotiated wage does not beat m̃ in which case the generated surplus is zero.

2. If the competing firm is willing to negotiate and x > θ, then the wage offer φ(x, θ) beats
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the best available offer from the incumbent, and the worker moves. However, it may still be

that φ(x, θ) < m̃, in which case the worker may claim the minimum wage.

3. With probability (1− p), the firm makes a non-negotiable offer, x. In this case, the worker

may accept a newly bargained wage at the incumbent firm, φ(θ, x), she may accept the

non-negotiable wage x and switch firms, or she may prefer to keep her minimum wage offer

at the incumbent firm.

The three outcomes here correspond to the three integrals on each line of the above expression.

Accordingly, the new surplus function S must be re-written to incorporate the possibility that

future wages are constrained by m:

(ρ+ δ)S(θ) = θ + λep

∫
θ

max{M(x)− S(θ), α[S(x)− S(θ)]}dFθ

+ λe(1− p)
∫
θ

(S(x)− S(θ))dΦ + δVu (19)

We can, as before, define the reservation match value by the relation S(θ∗) = Vu. Since there is

no guarantee that θ∗ ≥ m̃, we must define in addition θ? = max{θ∗, m̃} which gives the lowest

profitable match. In turn, this defines the lower bound of the offer distribution for n-firms. Adding

the restriction below on reservation matches to those above is sufficient to pin down the solution:

ρS(θ∗) = b+ λep

∫
θ?

max{M(θ), α(S(θ)− S(θ∗)), 0}dFθ + λe(1− p)
∫
θ?

(S(θ)− S(θ∗))dΦ (20)

3.1 When Minimum Wages Bind

We next revisit the question of when minimum wages bind in this model. First, it must be noted

that the conditions of Lemma 1 still apply here, and hence minimum wages never bind at n-firms.

Figure 2 shows two scenarios in which the minimum wage will bind at r-firms. For illustrative

purposes, we set the minimum wage at $5.50 and hour. First, we fix the winning firm’s match at

$6/hr, and consider what happens to φ(6, y) as y decreases. We can see in the left panel of Figure

2 that the bargained wage hits the lower bound of $5.50 for lower values of y. In addition, we see

that the presence of a binding minimum wage inflates all wages above what they would be in the

non-binding case. In the right panel of Figure 2, we see what happens when the outside option

is fixed at $6/hr and the winning match y increases: for higher values of y, the minimum wage

binds. As y increases, the worker is in principle willing to accept wage cuts in exchange for the

possibility that they will capture future surplus, but the lower bound on wages prohibits such a

tradeoff, transferring surplus to the worker.

Furthermore, these two scenarios trace out a combination of match value pairs (x, y) at which

the minimum wage interferes with the bargaining process in this way. Specifically, when either

φ(x, y) < m or φ(y, x) < m, the bargaining process is rendered unnecessary by the minimum
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wage regulation. In Figure 3 we trace out this area for a particular parameterization, and call the

resulting area the “No Bargain Zone”.

4 Data

While Hall and Krueger (2012) provide compelling evidence that wages are set both through

bargaining and non-negotiable offers, the data they collect is not informative about the other

structural parameters of our model. In pursuit of estimation, we elect to use the Survey of

Income and Program Participation (SIPP) which has been used successfully in the past to estimate

models of OTJ search (Dey and Flinn, 2005; Flinn and Mullins, 2015). The SIPP is a nationally

representative, household-based survey comprised of longitudinal panels. Each panel lasts four

years in total. The survey is administered in four-month waves, at which point information is

collected retrospectively for the previous four months. Therefore, each panel contains 12 waves of

the survey. Our data is constructed from waves 3 through 8, 4 giving data on employment status

and wages for a 24 month window, from 2004 to 2006. 5

Since our principal application of the model developed in the previous section will be to the

introduction of a binding minimum wage, we focus our attention on a subpopulation most likely

to be affected by this change: high school graduates between the age of 21 and 30. Using the 2004

Panel of the SIPP, we construct a data set consisting of employment and unemployment spells for

workers who fit this sample selection criteria.

In Appendix E we offer more precise details on how these data are constructed. Here we give

sufficient detail for the reader to understand the analysis that follows. Our operating dataset is a

panel Di for each worker i of the form:

Di = {(Ei,s,Wm
i,s,0,W

m
i,s,1, Ti,s), s = 1, 2, ..., Si} = {Di,s, s = 1, 2, ..., Si}

where Ei,s ∈ {0, 1} indicates the employment status of the worker in that spell, Ti,s is the duration

(in months) of the spell, while Si is the number of spells observed for worker i. We use Di,s to

denote the relevant data for spell s of worker i.

If employed (Ei,s = 1) then Wm
i,s,0 is the wage measured6 at the beginning of the spell, and

Wm
i,s,1 the wage at the end of the spell. If unemployed (Ei,s = 0), wage entries take null values.

Spells at the beginning and end of the 24-month period are truncated, in which case we record the

truncated durations, letting Wm
i,1,0 and Wm

i,Si,1
be the measured wage at the beginning and end

4See Appendix E for the reasons that motivate our choice of these waves
5Because of the SIPP’s rotating wave structure, the beginning and ending months of each wave are not identical

for all survey members
6This notation allows us to assume later that the true wage Wi,s,j and the measured wage in the data are

separated by measurement error.
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of the sample window, respectively. Since our key solution concept is the notion of steady state

equilbrium, we must assume that the economy is in steady state when we draw our sample. Under

this assumption, employment status and wages in the first observed spell, {Ei,0,Wm
i,0}, which is

taken at the beginning of the observation window, can be thought of as a random draw from this

steady state. This observed spell can be used, therefore, when thinking about the distribution of

wages and employment states in the stationary equilibrium.

In Table 2 we present some descriptive statistics from this data set. Several features of the data

are of note. To begin, notice that workers in this sample face long unemployment durations, 5.847

months on average. Accordingly, the steady state rate of “unemployment” is high, around 20%.

There are two explanations for this statistic. First, a higher unemployment rate for this selected

sample of low-skill workers is demographically consistent with previous work. Second, we are

classifying “unemployment” somewhat differently from traditional studies of labor-market flows,

where sample members must report actively looking for work to be counted among the unemployed.

Rather, we designate unemployment to be any observed absence of an employment spell. Given

the documented pattern of movement between traditional definitions of unemployment and the

designation of being “out of the labor force”(Flinn and Heckman, 1983), our inflated unemployment

rate is not incoherent with the literature.

Despite the relative slackness of this labor market, we find that OTJ transitions are not un-

common. On the contrary, we document that 31.8% of the employment spells that end (i.e. that

are not truncated by the 24-month cut-off) in our sample are ended by a transition to a new

employer.

We also make note of the average wage for workers in this sample. At roughly $14 an hour in

2016 dollars,7 this implies that many of our sample workers would be affected by recent minimum

wage proposals, which have ranged between $10 and $15 an hour. Conversely, a $15 minimum wage

in 2016 dollars corresponds to a minimum wage of roughly $11.80 in our sample. By inspecting

Figure 1, which shows the distribution of workers’ wages, we can see that a sizeable fraction of

the sample would indeed be affected by such a change.

To finish this section, we revisit the statistics provided by the survey of Hall and Krueger

(2012), which are presented in Table 1. We separate workers by those who have obtained a high

school diploma or less, and those who have attended some college. The pattern of increasing

bargaining rates for higher-skilled workers is clearly observable, with college-attending workers

doing so at a rate of 40.8% compares to high school workers, 22.7% of whom report bargaining.

In order to make appropriate comparison with our selected SIPP sample, we also examine the

74 workers in this survey who report high school attendance and have ages between 21 and 30.

7A back of the envelope calculation using the Bureau of Labor Statistics’ Consumer Price Index (CPI) series.

See https://download.bls.gov/pub/time.series/cu/
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While this adds considerable imprecision to the estimate of the bargaining proportion, we feel

that 15.5% is a reasonable fraction for this population, and uncertainty around this number can

easily be accommodated in our estimation procedure. Finally, while college workers enjoy the

highest premium to bargained wages (nearly $7 an hour), a small, yet significant, premium can

be detected amongst the full sample of high school educated workers. The existence of such a

premium is a prediction that can be revisited in our estimated model.

5 Estimation

Using the panel dataset constructed from the SIPP in the previous section, we proceed now to

the problem of estimating the structural parameters of the model. We pursue this by judicious

choice of statistics from the data, SN , for which we can construct model-based equivalents, S(Ω),

from simulated data, for a given choice of parameters, Ω. If W is a symmetric, positive-definite

weighting matrix, then the estimator

Ω̂N = arg min(SN − S(Ω))′W(SN − S(Ω))

can be thought of as a simulated, minimum distance estimator. Commonly known as Indirect In-

ference, regularity conditions on the asympotic properties of SN as sample size N →∞ guarantee

that the estimator Ω̂N is itself consistent and uniformly asymptotically normal (Gourieroux et al.,

1993).

Let us begin by considering which features of the data can be used for this purpose. Estimation

of the rate parameters {λu, λe, δ} is straightforward using employment and duration data, following

the analysis of Flinn and Heckman (1982) and Postel-Vinay and Robin (2002). We use the mean

duration of employment and unemployment spells which (fixing other parameters) are tightly

linked to the contact rate in unemployment, λu, and the total arrival rate of potentially spell-

ending events, λe + δ. We target as a third moment the fraction of completed employment spells

that result in a job-to-job transition.

For the remaining parameters, we consider the distribution of log-wage changes under a set of

employment histories. Noting that, in our model, Wi,s,j = aiωi,s,j where ωi,s,j is either equal to

φ(θi,s, qi,s,j), or ϕ(θi,s), depending on the firm that currently employs worker i, we see that:

log(Wi,s,j)− log(Wi,t,k) = ωi,s,j − ωi,t,k ∀i, s, t, j, k.

Thus, examining log-wage differences neutralizes the role played by ability and allows us to sepa-

rately estimate the remaining structural parameters without considering the distribution of ability.

Furthermore, we wish to account for the possibility of measurement error in wages, given that

wages are self-reported in the SIPP. Thus, we assume the following relationship between wages in
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the data and the true wage:

Wm
i,s,j = εi,s,jWi,s,j

where the measurement error, εi,s,j , is drawn independently and identically over time from the

distribution Fε, with the restriction that E[εi,s,j ] = 1. Assuming multiplicative measurement error,

we get:

log(Wm
i,s,j)− log(Wm

i,t,k) = ωi,s,j + log(εi,s,j)− ωi,t,k − log(εi,t,k) ∀i, s, t, j, k.

Following this discussion, then, there are three distributions to estimate: Fa, Fθ, and Fε. Let

h = {d1, d2, ..., dK} be a particular employment history (a sequence of employment transitions).

Our pursuit of identification relies on the fact that, given the finite structural parameters of the

model (Ω = {λu, λe, δ, α, p, b}), conditioning on a particular employment history, h, provides a

log-wage change distribution defined by a parametric operator on the match distribution:

F∆ log(W ) | Hi=h = Oh,Ω[Fθ]

Let us denote the corresponding characteristic function of F∆ log(w)|h as ϕ∆ω|h. Once our obser-

vations are overlayed with measurement error, we have the characteristic function decomposition:

ϕ∆ log(Wm)|h(t) = ϕ∆ε(t)ϕ∆ω|h(t)

Thus we estimate the model by attempting to match the distribution of wage changes under three

different employment histories:

log(Wm
i,s+1,0)− log(Wm

i,s,1) | Ei,s = 1, Ei,s+1 = 1 (EE)

log(Wm
i,s+2,0)− log(Wm

i,s,1) | Ei,s = 1, Ei,s+1 = 0, Ei,s+2 = 1 (EUE)

log(Wm
i,s,1)− log(Wm

i,s,0) | Ei,s = 1, Ti,s = 24,Wm
i,s,0 6= Wm

i,s,1 (EE24)

The last line reflects the length of the panel we use, which is 24 months. Identification now rests

on these three histories being sufficiently informative to invert out Fθ and F∆ log(ε). Assuming

that Flog(ε) is symmetric, the latter is sufficient to identify it up to a location normalization, which

we have made already. In the absence of measurement error, it is conceivable that even using

only one of these histories would be sufficient, equivalent to the operator Oh,Ω being invertible for

history h. Since each distribution is convoluted with ∆ log(ε) however, we add two more histories

to ensure there are adequate restrictions on the model.

Typically, unless distributions can be directly analytically inverted from the data 8, nonpara-

metric identification under these conditions requires assumptions of invertibility on the operator

defined by the model. It is typically quite burdensome to prove such properties, so we do not

8Postel-Vinay and Robin (2002) is a relevant example of such a case
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undertake that exercise in this paper. We will, however, find that estimation permits a relatively

flexible specification of the distributions Fθ and Fε. Specifically, we allow each to be a mixture

of two log-normal distributions. Fθ therefore has parameters µ1, µ2, σ1, σ2 with mixing parameter

πθ, and Fε an equivalent set. We normalize µ1 = µ2 = 0, while we choose µε,1, µε,2 such that

E[εi,s,j ] = 1.

Finally, to estimate the distribution of ability, Fa, we note that this can be nonparametrically

estimated from the distribution of wages in steady state, assuming we have in hand estimates of

all the other parameters. This follows from the observation that

ϕlog(Wm)(t) = ϕa(t)ϕlog(ε)(t)ϕω(t)

Where the latter two characteristic functions come directly from the estimates of the model pa-

rameters. In practice, however, since we will later be required to solve the model with binding

minimum wages, in which the role played by ability is no longer neutralized, we choose a parsi-

monious 5-point distribution9 for a.

5.1 Estimates

With this data, we estimate the model by indirect inference, matching the transition moments

and deciles of the distributions described above. Estimates from this procedure are presented

in Table 3. Our estimate of the flow rate out of unemployment, 0.115 , is lower than typical

estimates in this literature, reflecting the longer spells of unemployment faced by workers in our

sample. The flow rate of offers while on the job, 0.026 , implies a job offer arrival rate of roughly

once every 30 months. While this may seem low, we note that it is larger still than the rate

of exogenous separation from firms. Again, these magnitudes are necessary to fit the average

duration of employment spells in our chosen sample.

Turning to model fit, Tables 4 and 5 show that the model does a good job of matching the

features of the data that we deem to be important and structurally informative. Of additional

interest, however, are the predictions provided by the model on objects not directly observed in

the data.

Figure 4 shows the densities of the distribution of matches, Fθ, and the distribution of mea-

surement error, Fε. While these two random variables appear to show a comparable spread, our

estimates suggest that wages, while often accurately measured, show the capacity for severe mis-

measurement. Additionally, the estimates suggest that variation in match quality is non-trivial,

and it is not uncommon for the quality of the match to diminish or enhance output by values as

large as 20%.

9We find that 5 types is sufficient to accurately fit the deciles of the steady state wage distribution
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We estimate that the structural proportion of bargaining firms, p, is 0.074, about half the

proportion of bargained wages observed in steady state, 15.52. This can be rationalized by the

fact that r-firms are able to retain workers more effectively than n-firms.

5.1.1 Wage offers at n-firms

In equilibrium, how do n-firms adjust their wage offers with match quality? In Figure 5, we plot

wage offers as a function of match quality, ϕ(θ). Two observations are immediate. First, for low

matches close to the reservation, θ∗, the wage offer function is flat. Accordingly, for lower values

of matches, n-firms are able to claim a greater fraction of the total match surplus.

Second, the wage offer gets steeper as the match density increases. Higher match densities

reflect a greater probability that winning offers close to the current match are drawn, which

requires the equilibrium offer to be steeper in this region. Conversely, for higher match values,

where the probability of a better match being drawn is low, ϕ is once again flat. This implies that

n-firms can extract a greater fraction of the surplus for higher match values also. We can, in fact,

compute an “implied” bargaining share to the workers when an n-firm is met, given by:

αn(θ) =
S(ϕ(θ))− Vu

Jn(θ, ϕ(θ)) + S(ϕ(θ))− Vu
(21)

The term in the numerator gives the surplus of the match to the worker, while the denominator

gives the total surplus of the match to both parties. Figure 6 shows αn(θ) using the model solution

implied by our estimates. At the reservation match, since the only acceptable offer is θ∗, the worker

claims all the surplus in this case. However, since ϕ(θ) is flat in this region, the implied share

to workers quickly drops, and increases as competition to retain the match intensifies. We see a

decrease once more for higher matches, when the local density of Fθ decreases. For reference, we

plot also in Figure 6 the estimate bargaining parameter to workers ar r-firms, α, which takes the

value 0.192, yielding that the implied bargaining position of n-firms is at times better and at times

worse than r-firms.

In Appendix D.2 we show that these two features of the wage function (flatness in the region

close to θ∗, and flatness in regions of low density) are consistent across all parameterizations of

the model.

5.1.2 Wage Inequality

A recurrent question in the empirical literature on search frictions concerns the extent to which

search frictions can account for observed inequality in worker’s wages (Postel-Vinay and Robin,

2002; Hornstein et al., 2011). Our extension of standard OTJ search models to include both

negotiating and non-negotiating firms has unique implications for this question. To facilitate this
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analysis, we repeat the observation that wages can be decomposed as:

log(Wi) = log(ai) + log(ωi)

where ωi is equal to φ(θi, qi) if the worker is at an r-firm, and ϕ(θi) if at an n-firm. Thus, overall

wage inequality can be conveniently decomposed into a component derived from ability, ai, and a

component derived from search frictions, ωi. In Figure 7 we plot the distribution of the component

ω, which we will call “residual wages” in steady state at n and r-firms. We see that, while workers

at both types of firms display dispersion in this wage residual, the distribution of wages at r-firms

shows much more residual wage inequality. Equivalently, we can say that the existence of n-firms,

who do not renegotiate wages, compresses the dispersion in wages attributable to search frictions.

The logic behind this result is simple. For lower match values, while n-firms are forced to offer

wages at or near the reservation match θ∗, r-firms can offer much lower wages, which the worker

is willing to accept under the knowledge that wage increases are likely in the future. At higher

match values, workers at r-firms are able to obtain consistently higher wages (and greater fractions

of the match) through encounters on the job with other firms. At n-firms, on the other hand, the

wage offer function ϕ is relatively flat in this range, and encounters with other firms to not result

in large wage increases.

We calculate that the variance of log(ωi), the log-wage residual, is 0.0056 overall, 0.0040 at

n-firms, and 0.0122 at r-firms. When compared to the variance in log-ability, 0.1142, we find that

search frictions in this population account for quite a small fraction of overall dispersion (4.71%).

5.1.3 Inefficient Mobility

One important implication of this model framework is that, when r and n firms compete for

workers, an r-firm with a lower match value may win the worker simply because of the n-firm’s

unwillingness to negotiate. We call this phenomenon inefficient mobility.

Let θr < θn denote the match values at an r-firm and n-firm, respectively. Now, suppose that

ϕ(θn) < θr. Efficient mobility dictates that the worker must go to the firm with the greatest

productive capacity, however in this case, since the highest wage available at that firm, ϕ(θn), is

less than what the r-firm is willing to offer, inefficient mobility occurs.

Using the wage function ϕ derived from our structural parameter estimates, we show in Figure

9 the combinations of match values (x, y) that result in inefficient mobility. Furthermore, we

can quantitatively evaluate the severity of this problem by computing the fraction of on-the-job

encounters in steady state that result in an inefficient mobility decision. This has an analytic

expression:

Rate of inefficient mobility =

∫
[F (ϕ−1(x))− F (x)] · [(1− p)gr(x) + pgn(x)]dx (22)
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Once again using our estimates, we apply this formula to calculate that 8.30% of on-the-job

ecounters result in an inefficient mobility decision. We will revisit the preponderance of this

phenomenon in our counterfactual exercises.

5.2 A Partial Equilibrium Counterfactual

To investigate the quantitative importance of the frequency of bargaining, p, to wage inequality,

efficiency, and worker welfare, we conduct two counterfactual experiments. First, we eliminate

bargaining altogether by setting p = 0. Second, we consider the changes in partial equilibrium

when the fraction of bargaining firms is exogenously set at p = 0.5. In Table 6 we document

some important aggregate statistics for these two counterfactual scenarios, relative to the baseline.

Consistent with our previous arguments concerning wage inequality and renegotiating firms, we see

that increasing (decreasing) the fraction of r-firms leads to increases (decreases) in wage dispersion

due to search frictions. In fact, increasing the fraction of r-firms to 0.5 nearly doubles the variance

of the log-wage residual. 10

Two further important observations remain to be made. First, we note that increasing the

fraction of r-firms leads to a marked increase in the rate of inefficient mobility: in the counterfactual

equilibrium more than 20% of firm interactions result in a suboptimal mobility decision. This has

consequences for average output per worker, which is reduced by 5 cents an hour. Though this

may seem small, one should be reminded that this is a flow value for a single worker, which may

still aggregate (across workers and over time) to a sizeable loss in output. On the other hand, we

know that if all firms were type r, that there would be no inefficient mobility. Thus the mapping

between p and the measure of inefficient moves is not monotonic.

Our second observation is that workers, according to average worker welfare in steady state,

appear to prefer firms to negotiate less (lower values of p). Since n-firms, who trade-off profits

with worker retention, are force through competition to offer higher wages, this is preferable

in equilibrium to being at an n-firm where high wages must be solicited through renegotiation.

Validation of this result can be found by returning to Figure 6, which shows that for a large

range of match values, the implied bargaining power of workers at n-firms is much higher than

for r-firms. In general, the answer to whether workers prefer a greater fraction of r-firms varies

depending on the model’s parameters. In particular, the worker’s bargaining share, α, at r-firms,

and the rate at which OTJ offers can be solicited, λe, critically determine the payoff to being at

a renegotiating firm.

10Our sample consists only of individuals who have at most a high school education. Since Hall and Krueger find

that individuals with higher levels of completed schooling are more likely to bargain over wages, this may be one

factor in the much greater degrees of wage and earnings dispersion for college-completers in comparison with those

who have lower levels of education.
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6 General Equilibrium

Section forthcoming. See below for general details.

We first introduce the conditions under which p and the contact rates (λu, λe) are determined

in equlibrium. We adopt the now standard model of vacancy posting11, assuming that:

λu = κγ , λe = µeλu, q = κγ−1

Where κ is market tightness, the ratio of searching workers to posted vacancies, and q(κ) is the

contact rate for firms with open vacancies searching for workers. Market tightness can be expressed

as

κ =
vr + vn

Mu + µeMe
.

We follow Lise and Robin (2017) and assume that each firm type equates the marginal cost of

vacancy creation with the marginal benefit of posting, such that:

−c′r(vr) + q(κ)
∑
a

∫
(1− α)[S(a, θ)− S(a, x)]+dFθdG̃(x|a)π̃a = 0 (23)

−c′n(vn) + q(κ)
∑
a

∫
J
(
a, θ, ϕ(θ)

)
1{ϕ(θ) > x}dFθdG̃(x|a)π̃a = 0 (24)

p =
vr

vr + vn
(25)

cj(vj) =
cj

1 + ψ
v1+ψ
j for j ∈ {r, n} (26)

Where G̃ and π̃ are the endogenous distributions of best available offers and ability, conditional

on having met this worker in the undirected pool of searchers. We combine these restrictions with

our estimates to back out the parameters cr, cn, subject to a choice of the elasticities γ, ψ. We

explore sensitivity of our counterfactual exercises to choices of these parameters.

Our chosen counterfactual exercise is an increase in the minimum wage, to $10/hr.

7 Conclusion

Section forthcoming.
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A Tables

Table 1: Descriptive Statistics from Hall and Krueger (2012) Survey

High School, 21-30 All High School All College

% Bargain 15.52 22.738 40.871

[7.60, 25.89] [19.565, 26.387] [38.298, 44.366]

Mean Wage 12.73 14.367 22.888

[10.94, 14.61] [13.668, 15.129] [22.193, 23.542]

Mean Wage | Bargain 17.36 14.735 25.007

[8.35, 27.64] [13.040, 16.602] [23.658, 26.214]

Mean Wage | No Bargain 11.77 12.323 18.194

[10.18, 14.13] [11.640, 13.241] [17.177, 19.113]

Sample Size 74 691 1822

Notes: This table shows some descriptive statistics from the survey data collected in Hall and Krueger (2012).

Bracketed intervals indicate 95% confidence intervals for the statistics calculated. Bargained wages are judged

by the answer to the survey question “When you were offered your current/previous job, did your employer

make a “take-it-or leave-it” offer or was there some bargaining involved?” The left column shows statistics

computed for high school graduates aged 21-30, the middle column shows high school graduates of all ages,

the right column is for college graduates. Data is publically available at http://www.stanford.edu/~rehall/

Hall_Krueger_2011-0071_programs_and_results
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Table 2: Descriptive Statistics from SIPP Sample

Description Notation Moment

Average duration of unemployment spells E[Ti,s | Ei,s = 0] 5.847

[5.527, 6.216]

Average duration of employment spells E[Ti,s | Ei,s = 0] 13.897

[13.540, 14.278]

% Of (non-truncated) employment spells

ending in EE transition

P [Ei,s+1 = 1 | Ei,s = 1, s < Si] 31.825

[27.382, 35.116]

Average number of spells per worker E[Si] 1.936

[1.889, 2.014]

Average wage at beginning of sample E[Wi,0,0 | Ei,0 = 1] 11.239

[10.986, 11.532]

% Unemployed at beginning of sample P [Ei,0 = 0] 20.632

[18.815, 22.447]

Sample size N 1488

Notes: This table shows decriptive statistics from the SIPP. Durations are reported in months, wages are reported in

$/hour. Bracketed intervals indicate 95% confidence intervals for the statistics calculated.
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Table 3: Estimates

Model Parameters

λu λe δ p α b σ0 σ1 πθ

0.115 0.026 0.020 0.074 0.192 0.213 0.057 0.139 0.502

[0.104, 0.123] [0.023, 0.030] [0.018, 0.022] [0.058, 0.086] [0.122, 0.221] [0.212, 0.286] [0.016, 0.057] [0.065, 0.238] [0.497, 0.504]

Measurement Error Ability Distribution

σε,1 σε,2 πε a1 a2 a3 a4 a5

0.025 0.132 0.503 7.58 9.26 11.50 13.96 20.16

[0.009, 0.038] [0.111, 0.169] [0.500, 0.507] [7.31, 8.06] [8.99, 11.52] [9.56, 14.34] [11.51, 14.51] [19.03, 21.15]

π1 π2 π3 π4 π5

0.20 0.20 0.20 0.20 0.20

Notes: This table presents estimates from the MSM procedure of the baseline model, in which minimum wages do not

bind. Parameters are as described in the text. Fθ, the match distribution, is modeled as a mixture of two normals with

standard deviations (σ1, σ2) and mixing probability πθ. Measurement error, Fε is modeled similarly. Numbers in square

brackets show the 95% confidence intervals for each parameter, which have been computed by nonparametric bootstrap,

using 100 resamples of the data.

Table 4: Model Fit I: Transitions

Moment Model Data

E[Ti,s | Ei,s = 0] 5.86 5.85

E[Ti,s | Ei,s = 1] 13.90 13.90

P [Ei,s+1 = 1 | Ei,s = 1] 0.31 0.32

P [Wage Bargained] 0.16 0.16

27



Table 5: Model Fit II: Distributions

∆ log(w) | EE ∆ log(w) | EUE ∆ log(w) | Ti = 24 log(w)

Model Data Model Data Model Data Model Data

q10 -0.12 -0.24 -0.24 -0.35 -0.09 -0.08 1.88 1.87

q20 -0.06 -0.06 -0.16 -0.21 0.00 0.02 1.98 2.00

q30 -0.01 0.00 -0.11 -0.09 0.04 0.05 2.09 2.08

q40 0.02 0.00 -0.06 -0.04 0.07 0.07 2.19 2.20

q50 0.05 0.06 -0.02 0.00 0.10 0.10 2.30 2.30

q60 0.09 0.12 0.02 0.05 0.13 0.12 2.40 2.40

q70 0.13 0.17 0.06 0.12 0.16 0.16 2.51 2.52

q80 0.17 0.22 0.11 0.20 0.22 0.22 2.68 2.67

q90 0.24 0.36 0.19 0.36 0.32 0.37 2.88 2.88

Table 6: Results for Partial Equilibrium Experiments

Baseline (p = 0.074) p = 0 p = 0.5

E[W | n− firm] 11.08 11.15 10.65

E[W | r − firm] 10.56 NaN 10.88

Worker Welfare 148.56 150.39 136.52

V[log(ω)] 0.0056 0.0041 0.0117

V[log(ω) | n− firm] 0.0040 0.0041 0.0049

V[log(ω) | r − firm] 0.0122 NaN 0.0142

Average output per worker ($/hr) 11.04 11.08 10.99

Rate of inefficient mobility (%) 8.30 0.00 20.50
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Table 7: Model Estimates for p = 0 and p = 1

Baseline Model No Renegotiation (p = 0) All Renegotiation (p = 1)

λu 0.115 0.118 0.122

λe 0.026 0.026 0.021

δ 0.020 0.020 0.020

p 0.074 0 1

α 0.192 - 0.097

b 0.213 0.263 0.572

σ0 0.057 0.182 0.191

σ1 0.139 0.010 0.005

πθ 0.502 0.502 0.499

σm,0 0.025 0.045 0.005

σm,1 0.132 0.238 0.151

πm 0.503 0.506 0.505

θ∗ 0.787 0.865 0.838

QN 0.061 0.394 0.089

Table 8: Model Fit for p = 0 and p = 1: Transitions

Moment p = 0 p = 1 Data

E[Ti,s | Ei,s = 0] 5.85 5.83 5.85

E[Ti,s | Ei,s = 1] 13.89 13.82 13.90

P [Ei,s+1 = 1 | Ei,s = 1] 0.32 0.31 0.32
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Table 9: Model Fit for p = 0 and p = 1: Distributions

∆ log(w) | EE ∆ log(w) | EUE ∆ log(w) | Ti = 24

p = 0 p = 1 Data p = 0 p = 1 Data p = 0 p = 1 Data

q10 -0.25 -0.09 -0.24 -0.33 -0.26 -0.35 0.00 -0.11 -0.08

q20 -0.11 -0.01 -0.06 -0.19 -0.17 -0.21 0.00 -0.01 0.02

q30 -0.03 0.04 0.00 -0.12 -0.12 -0.09 0.00 0.03 0.05

q40 0.01 0.08 0.00 -0.06 -0.07 -0.04 0.00 0.07 0.07

q50 0.05 0.11 0.06 -0.01 -0.02 0.00 0.00 0.10 0.10

q60 0.09 0.13 0.12 0.03 0.00 0.05 0.00 0.13 0.12

q70 0.15 0.16 0.17 0.09 0.02 0.12 0.00 0.15 0.16

q80 0.23 0.21 0.22 0.17 0.07 0.20 0.00 0.21 0.22

q90 0.35 0.29 0.36 0.30 0.15 0.36 0.00 0.30 0.37
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B Figures

Figure 1: Steady State Wage Distribution from the SIPP
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Notes: This figure shows a nonparametric density plot of “steady state” wages, which

are taken from workers who are employed at the begnning of our 24-month SIPP

sample.
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Figure 2: Binding Minimum Wages at r-Firms
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Notes: In this figure we plot bargained wages φ. In the left panel, we fix the outside option at a match

value of $6/hr and vary the outside option y. On the right, we fix the outside option at $6/hr and vary

the winning match y.
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Figure 3: No Bargain Zones when minimum wage binds
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Notes: This figure shows the combinations of x and y for which the minimum wage

interferes with the bargaining process.
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Figure 4: Densities of the match distribution, Fθ, and measurement

error, Fε
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Notes: This figure shows the the density of the distribution of match values, Fθ, and

the density of the measurement error distribution, Fε. Realizations of both random

variables can be measured in $/hr.
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Figure 5: Wage offer function, ϕ, and density of match values, fθ
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Notes: This figure shows the wage offer function, ϕ of n-firms. For exposition, the

(re-scaled) density fθ of the match distribution Fθ is shown in the background.
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Figure 6: Implied Bargaining Parameters for n-firms, αn(θ).
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Notes: This figure shows the implied bargaining parameter, defined as the share

of surplus to the worker given the wage offer, ϕ(θ) of n-firms. For reference, the

estimated bargaining parameter for r-firms, α, is plotted also. See equation (21) for

further explanation.

36



Figure 7: Wage distribution in steady state at r and n firms
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Notes: This figure shows the wage distribution in steady state at n and r firms, using

parameter estimates from the baseline model.

37



Figure 8: Densities of match values in steady state at r and n firms
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Notes: This figure shows the distribution in steady state of match values at n and r

firms, using parameter estimates from the baseline model.
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Figure 9: Inefficient Mobility
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Notes: This figure shows the combinations of matches at r and n firms that result

in efficient and inefficient mobility. An n-firm with match x wins if and only if the

wage offer ϕ(x) is greater than the r-firm’s match y. When ϕ(x) < y < x, the model

exhibits inefficient mobility.

C Proofs

In the following set of results, we make extensive use of equations (13) and (15), which express

the n-firm’s value function as:

Jn(θ, w) = Γ(Φ(w), F (w))(θ − w) = Γ(w)(θ − w).

The second equality is notationally abusive, but useful, so we adopt it here. The function Γ is

an expression that combines the probability that w successfully hires a worker, with the rate at

which the worker is lost when w is the non-negotiable wage.

Secondly, we assume the following tie-breaking rule: when two-firms make equally valuable

wage offers, the worker moves from the incumbent to the new firm. It should be noted that the

results below are robust to the alternative rule: that the worker defaults to the incumbent firm.

Furthermore, in equilibrium, ties occur with zero probability.
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Proof of Lemma 1

Proof. Since all offers w < θ∗ are, by definition, never accepted, we know that w ≥ θ∗. Now

assume that w > θ∗, and consider the optimal offer made by a firm when a match x ∈ (θ∗,w) is

drawn. Since any offer w ∈ (θ∗, x) is both profitable to the firm and acceptable to an unemployed

worker (who is met with positive probability), we have a contradiction.

Lemma 2. Γ is (i) strictly increasing; and (ii) continuous if and only if Φ is continuous.

Proof. (i): This follows directly from our assumption that F is strictly increasing in w (there are

no gaps in the distribution of match qualities) and Φ is, by definition, non-decreasing. Thus, Γ

must be strictly increasing in w, given its form in (15).

(ii): This is elementary, since we see that Γ is a continuous transformation of Φ and F .

Lemma 3. In equilibrium, the wage offer distribution Φ is continuous.

Proof. Note that a discontinuity in Φ at some w implies a mass point at w and, by Lemma 2, Γ

is discontinuous. Given the tie-breaking rule, we have that lim+ Γ(w) > Γ(w). This is caused by

a discontinuous increase in the probability of retaining a worker.12 Hence, lim+ J(θ, w) > J(θ, w)

for any θ, and for any firm offering wage w, an improvement in profit can be made by offering

w + ε where ε is arbitrarily small. Thus no firm prefers to offer w, a contradiction.

The following corollary is immediate.

Corollary 1. Γ is continuous.

Lemma 4. In equilibrium, wages are given by an almost everywhere deterministic function, ϕ.

Proof. Suppose otherwise. Then for a firm with match θ, the firm is indifferent over a set W with

positive Lebesgue measure:

Γ(w)(θ − w) = c, ∀ w ∈ W.

Likewise, for a firm with match θ̂ 6= θ, indifference is achieved over a set Ŵ:

Γ(w)(θ̂ − w) = ĉ, ∀ w ∈ Ŵ.

IfW∩Ŵ has positive measure, we must have Γ(w)(θ−θ̂) = c−ĉ for all w in this intersection, which

can be true only if Γ(w) is everywhere constant, contradicting Lemma 2. Therefore, W ∩ Ŵ = ∅,

and so this can only be true for a countable set of matches, which have measure zero under our

regularity assumptions on F .

12Notice that if we had assumed the alternative tie-breaking rule, there would be a discontinuous increase in the

probability of hiring the worker, and the result would still follow.
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Lemma 5. The wage offer function, ϕ, is strictly increasing in match values, θ.

Proof. Let ϕ(θ) = w. This implies that:

Γ(w)(θ − w) > Γ(ŵ)(θ − ŵ), ∀ŵ < w

Rearranging this expression we get:

(Γ(w)− Γ(ŵ))θ > Γ(w)w − Γ(ŵ)ŵ, ∀ŵ < w

By Lemma 2, Γ(w)− Γ(ŵ) > 0, which implies that for any θ′ > θ, we have

(Γ(w)− Γ(ŵ))θ′ > Γ(w)w − Γ(ŵ)ŵ, ∀ŵ < w

So when the match value is θ′, the above inequality implies that w is also preferred to all ŵ < w,

and so ϕ(θ′) ≥ ϕ(θ), However, if this inequality is not strict, repeated application of the above

inequality implies that ϕ(z) = w for all z ∈ [θ, θ′]. However, this implies a discontinuity in Φ,

contradicting Lemma 3. Thus, the inequality must be strict.

To prove differentiability, we make use of the following commonly known result.

Lemma 6. If a function, f : R 7→ R, is bounded, and monotonically increasing, it is almost

everywhere (according to Lebesgue measure) differentiable.

Proof. See, for example, Result 11.42 in Titchmarsh (1932).

Lemma 7. The wage offer function, ϕ is almost everywhere differentiable and lower semi-continuous.

Proof. Consider the function ϕ on the domain [θ∗, θ]. Since ϕ(θ) is bounded above by θ, bounded

below by θ∗, and strictly monotonically increasing, it follows from Lemma 6 that ϕ must be almost

everywhere differentiable (and hence almost everywhere continuous).

Consider now a potential discontinuity in ϕ at θ. Let d+ and d− denote the differentiation

operation, taking right and left limits, respectively. Let ϕ−(θ) = w0 and ϕ+(θ) = w1. We know

that w0 < w1. A discontinuity in ϕ implies that the distribution Φ is flat over the range [w0, w1],

and hence: d+Φ(w0) = d−Φ(w1) = 0. Supposing that ϕ(θ) = w1 (and hence the function is upper

semicontinuous), optimality of this wage choice implies that the pair of inequalities

d+J(θ, w1) ≤ 0, d−J(θ, w1) ≥ 0

must hold. Taking left and right derivatives at this point gives inequalities

λ1(ρ+ 2Ψ(w1))(pf(w1) + (1− p)d+Φ(w1))

(ρ+ Ψ(x))Ψ(x)
− 1 ≥ 0

λ1(ρ+ 2Ψ(w1))(pf(w1) + 0)

(ρ+ Ψ(x))Ψ(x)
− 1 ≤ 0

Since d+Φ(w1) = φ(w1) > 0, one inequality here contradicts the other. Hence, ϕ must be lower

semi continuous (application of the above inequalities at w0 yields no such contradiction).
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• These continuities are essentially kink points in the overall steady state distribution, flat

points in Φ.

• This suggests an algorithm for solution: at each point, check to see if there is an equally

profitable wage above, assuming no n-firm posts in between.

• If this holds, then the sufficient condition for optimality of this wage is violated in eqm.

D Model Solution

D.1 Solving the Steady State

We first derive the distribution of best attainable offers, G, of employed workers across this state

by balancing the flow equation:

dG(x) = −(δ+λepF (x)+λe(1−p)Φ(x))G(x)Me+λu[p(F (x)−F (θ∗))+(1−p)(Φ(x)−F (θ?))]Mu

Setting dG(x) = 0 and rearranging gives the steady state distribution as:

G(x) =
p(F (x)− F (θ∗)) + (1− p)(Φ(x)− Φ(θ?))

δ + λepF (x) + λe(1− p)Φ(x)

λuMu

Me

It will be helpful to substitute the expression:

Ψ(x) = δ + λepF (x) + λe(1− p)Φ(x)

such that:

G(x) =
p(F (x)− F (θ∗)) + (1− p)(Φ(x)− F (θ?))

Ψ(x)

λuMu

Me
.

Ψ(x) is the exit rate at a firm where the maximum attainable wage is x. Next, letGr(x) indicate the

measure of workers at r-firms with match value x, and let Gn(x) indicate the measure of workers

at n-firms with wage x, such that Gr(x) +Gn(x) = G(x). We can derive the flow equations:

dgr(x) = −[δ + λepF (x) + λe(1− p)Φ(x)]gr(x)Me + pf(x)[λuMu + λeMeG(x)] (27)

dgn(x) = −[δ + λepF (x) + λe(1− p)Φ(x)]gn(x)Me + (1− p)φ(x)[λuMu + λeMeG(x)] (28)

Subsituting the derived expression for G and imposing a blanced flow steady state yields:

gr(x) =
λupf(x)(δ + λeF (θ∗)

Ψ(x)2

Mu

Me
(29)

gn(x) =
λu(1− p)φ(x)(δ + λeF (θ∗)

Ψ(x)2

Mu

Me
(30)

Finally, to derive the distribution of wages at renegotiating firms, we think about the conditional

distribution of workers at a firm with match x whose last best offer had value q. The flow equation

for the mass of workers of this type is:

d(H(q|x)gr(x)) = −(δ+λepF (x)+λe(1−p)Φ(x))H(q|x)gr(x)Me+λepf(x)G(q)ME+λupf(x)MU
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Once again, we can substitute our expressions for gr and G, impose that the steady-state flow is

equal to zero, and rearrange to get:

H(q|x) =

(
Ψ(x)

Ψ(q)

)2

D.2 Solving the Wage Equation, ϕ

In the main text, we derived a condition such that each wage offer, ϕ(θ), solves the first order

condition for a firm at each match value θ, given the local shape of ϕ at θ. We can rearrange this

condition, in equation (17), to get a first order differential equation:

ϕ′(θ) =
Γ1

(
F (θ), F (w)

)
f(θ)

Γ
(
F (θ), F (w)

)
/(θ − w)− Γ2

(
F (θ), F (w)

)
f(w)

(31)

Γ1

(
F (θ), F (w)

)
=

λe(1− p)(ρ+ 2exit(θ, w))

(exit(θ, w)(ρ+ exit(θ, w))2
(32)

Γ2

(
F (θ), F (w)

)
=

λep(ρ+ 2exit(θ, w))

(exit(θ, w)(ρ+ exit(θ, w))2
(33)

exit(θ, w) = δ + λe(pF (w) + (1− p)F (θ)) (34)

The term (θ, w) is the rate at which a worker at an n-firm with match θ and wage w will leave

the firm, in equilibrium. Two important insights can be made when inspecting equation (31).

First, we see that the first term in the denominator explodes when the wage offer w is close to the

match value θ. Since Lemma 1 requires that the limit of ϕ(θ) as θ → θ∗ is equal to θ∗, we know

that ϕ must be increasingly flat in the region close to the reservation match value θ∗. Second, we

see that the density of the match distribution fθ(θ) appears in the numerator, suggesting that ϕ

will be steeper when the density is high, and flatter when the density is smaller (say, in the tails

of the distribution). Both of these predictions are borne out numerically.

One issue in using the differential equation above is that Proposition 1 does not guarantee that

ϕ is everywhere continuous, and the first-order condition is known only to be necessary and not

sufficient. The algorithm we use accounts for potential discontinuities in ϕ by globally checking

for optimality at each step.

To do this, we need to use the following profit function, which gives the profit to the firm under

the equilibrium condition that wage offers are ranked according to θ.

J∗(θ, w) =
θ − w

exit(θ, w)(ρ+ exit(θ, w))
(35)

The algorithm proceeds as follows, given a predetermined grid {θ0, θ1, ..., θJ} with θ0 = θ∗. To

initialize the algorithm, we set w0 = θ∗:

1. Given θj−1, wj−1(= ϕ(θj−1)), use (31) and either Euler’s method or a more advanced method

such as Runge-Kutta to compute the step dϕj .
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2. Check for global optimality by solving w∗ = arg maxw∈[wj−1,θj ] J
∗(θj , w).

3. If w∗ > wj−1, set wj+1 = w∗.

4. Otherwise, set wj = wj−1 + dϕj .

The idea here is that, if w∗ > wj−1, then the shape of the match distribution F supports a

discontinuity at θj , such that no firm offers between wj−1 and w∗. In addition, the marginal firm

θj is indifferent between these wage offers. If, on the other hand, the firm prefers to offer wj (the

lowest wage available) then we must introduce marginal wage competition by way of ϕ′(θ).

D.3 Solving Surplus Equations and r-Firm wages

In this section we provide further details for solving the surplus equation, S, which defines values

at both r-firms and n-firms. For ease of exposition, we provide once more the recursive definition

of S:

(ρ+ δ)S(x) = x+ λep

∫
x

α(S(y)− S(x))dF + λe(1− p)
∫
ϕ−1(x)

(S(ϕ(y))− S(x))dF + δVu

If we differentiating the surplus equation and rearranging gives:

S′(x) =
1

ρ+ δ + λe(αpF (x) + (1− p)Φ(x)

bearing in mind that Φ(x) = F (ϕ−1(x)). This, in turn, permits us to write:

S(x) = S(θ∗) +

∫ x

θ∗

1

ρ+ δ + λe(αpF (z) + (1− p)Φ(z))
dz = S(θ∗) + Ŝ(x)

In fact, adapting the method proposed by Cahuc et al. (2006), integration by parts yields the

following analytic solution:

(ρ+ δ)S(x) = x+ λe

∫
x

αpF (z) + (1− p)Φ(z)

ρ+ δ + λe(αpF (z) + (1− p)Φ(z)
dz + δS(θ∗)

In practice, we solve the model by linearly interpolating Ŝ over grid points in the space for θ. In

addition, the wage equation φ can be written as:

φ(x, y) = (ρ+ δ + λepF (y) + λe(1− p)Φ(y))(αŜ(x) + (1− α)Ŝ(y))− ρS(x∗)

− λep
[∫ x

y

[(1− α)Ŝ(z) + αŜ(x)]dF (z) +

∫
x

[(1− α)Ŝ(x) + αŜ(z)]dF (z)

]
− λep

[∫ ϕ−1(x)

ϕ−1(y)

[(1− α)Ŝ(ϕ(z)) + αŜ(x)]dF (z) +

∫
ϕ−1(x)

Ŝ(ϕ(z))dF (z)

]
(36)

Alternatively, using the restriction that V (x, y) = (1−α)S(y)+αS(x), algebra yields the following

expression for wages:

φ(x, y) = (1− α)y + αx− λep(1− α)2

[∫ x

y

S(z)dF (z) + F (x)S(x)− F (y)S(y)

]
(37)
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The third term in this expression signifies the extent to which a worker is compensated for lower

wages today with the promise of future appreciation in wages. This, in turn, depends critically on

the proportion, p, of firms that are willing to bargain. Finally, we can also solve for the value of

unemployment as:

ρS(θ?) = b+ λu

∫
θ?

(pαŜ(x) + (1− p)Ŝ(ϕ(x)))dF (x)

Similarly the surplus equation at θ? is

ρS(θ?) = θ? + λe

∫
θ?

(pαŜ(x) + (1− p)Ŝ(ϕ(x)))dF (x)

Combining these two expressions is sufficient to pin down θ?. This concludes our practical discus-

sion of how to solve the model in equilibrium.

E Data and Sample Construction

Section forthcoming.
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